A Parallel Hybrid Solver for Large Sparse Linear Systems in End-to-end Accelerator Structure Simulations

Lie-Quan Lee, Lixin Ge, Marc Kowalski, and Kwok Ko Stanford Linear Accelerator Center

SciDAC Collaborators at LBNL W. Gao, P. Husbands, X. Li, C. Yang, and E. Ng

- Parallel Simulation Codes
 - Omega3P/S3P/T3P
- Linear Solver Framework
- Hybrid Linear Solver
 - Conjugate Gradient with Hierarchical Preconditioner
- Wakefield Computations
- Work in Progress

Acknowledgments

- Work supported by DOE's HEP and ASCR Offices under the SciDAC Project
- All Simulations performed at NERSC's IBM/SP

- Parallel Simulation Codes
 - Omega3P/S3P/T3P
- Linear Solver Framework
- Hybrid Linear Solver
 - Conjugate Gradient with Hierarchical Preconditioner
- Wakefield Computations
- Work in Progress

Omega3P (Eigensolver for Finding Normal Modes)

Maxwell's Equations. In Frequency Domain

Finite Element **Formulation**

$$\nabla \times (\frac{1}{\mu} \nabla \times \mathbf{E}) - \frac{\omega^2}{c^2} \varepsilon \mathbf{E} = 0 \quad | \quad \mathbf{E} = \sum_i e_i \mathbf{N}_i$$

$$n \times \mathbf{E} = 0$$

 $n \times \mathbf{E} = 0$ on electric boundary

$$n \times (\frac{1}{\mu} \nabla \times \mathbf{E}) = 0$$

on magnetic boundary

$$\mathbf{E} = \sum_{i} e_{i} \mathbf{N}_{i}$$

$$\mathbf{K}\mathbf{x} = \frac{\omega^2}{c^2} \mathbf{M}\mathbf{x}$$

$$\mathbf{K}_{i,j} = \int \frac{1}{\mu} (\nabla \times \mathbf{N}_i) \bullet (\nabla \times \mathbf{N}_j) d\Omega$$

$$\mathbf{M}_{i,j} = \int \varepsilon \mathbf{N}_i \bullet \mathbf{N}_j d\Omega$$

- Shift-Invert Lanczos (SIL):
 - need to solve shifted linear system (K-σM)x=b

Omega3P Matrices (Application to Accelerator Cavities)

- Matrix
 - Real sparse symmetric (Closed cavity),
 - Complex sparse symmetric (Lossy materials),
 - Nonlinear (External Coupling),
 - Complex sparse Hermitian (Periodical structures)

S3P (Scattering Matrix Computations)

- Frequency-domain solver for finding the scattering matrix of traveling wave structures
- Matrix properties
 - Real symmetric (Lossless) or Complex symmetric (Lossy materials)

$$\int_{\Omega} \frac{1}{\mu_{r}} (\nabla \times \vec{E})^{*} \cdot (\nabla \times \vec{h}) d\nu - \frac{\omega^{2}}{c^{2}} \int_{\Omega} \vec{E}^{*} \cdot \vec{h} d\nu$$

$$= -i\omega \mu_{0} \int_{S} (n \times \vec{H}_{excit})^{*} \cdot \vec{h} ds$$

$$(\mathbf{K} - \frac{\omega^{2}}{c^{2}} \mathbf{M}) \cdot \mathbf{x} = \mathbf{b}$$

T3P (Time Domain Simulation)

$$\mathbf{M}\frac{d^2\mathbf{u}}{dt^2} + \mathbf{D}\frac{d\mathbf{u}}{dt} + \mathbf{K}\mathbf{u} = \mathbf{f}$$

- Beam, dipole, waveguide port excitation
- Implicit time stepping scheme (Newmark-beta scheme)
- Need to solve a linear system each time step
- Long simulation time -- Multiple right hand sides: 100,000 to 1,000,000

Challenges in Accelerator Simulations

- High accuracy for complex geometry ——
 - 0.01% frequency accuracy to meet tolerance requirement

- - Discretization resulting in matrices of 10's to 100's million DOFs

- Broadband response
 - Small beam excites a dense, broadspectrum consisting of hundreds to thousands of modes that are tightly clustered (0.5% separation).

- Parallel Simulation Codes
- Linear Solver Framework
- Hybrid Linear Solver
 - Conjugate Gradient with Hierarchical Preconditioner
- Wakefield Computations
- Work in Progress

Linear Solver Framework

Linear Solver Framework

Direct Solver Interface

Krylov-subspace Solvers

Preconditioners

Basic Linear Algebra Interface

Component-based Design

- Interface to SuperLU, WSMP, MUMPS
- CG, GMRES, QMR,
- SSOR, ILU, IC, ...
- Fortran BLAS, Boost μBLAS, MTL, Blitz++

Extensible

- Parallel Simulation Codes
- Linear Solver Framework
- Hybrid Linear Solver
 - Conjugate Gradient with Hierarchical Preconditioner
- Wakefield Computations
- Work in Progress

Motivation for Hybrid Linear Solver

H60VG3 is a 55-cell tapered structure considered to be the baseline design for the Next Linear Collider (NLC).

A coarse mesh is used for illustration purpose

• 1.3M DOFs / 4x16 CPUs on NERSC SP2 / 16 right hand sides

	CG+SSOR(1,4)	WSMP
Total Time	14582.1s	82.6s
Fact. Time	_	74.4s
Memory	2.9GB	19GB

Direct solvers are one to two orders of magnitude faster

Limitation of Direct Solvers

H60VG3 structure, linear element, N=30M, nnz=484M

S3P with WSMP

- 1024 CPUs, 487GB
 - Ordering time: 4248s
 - Numerical Factorization: 133s
 - Triangular solver (per RHS): 5.84 second

Omega3P with ESIL+WSMP

- 1024 CPUs, 738GB
 - Ordering time: 4143s
 - Numerical Factorization: 133s
 - Total: 5068s for 12 eigenvalues with 3 shifts
- Direct solvers require a large amount of memory per CPU
- What do we do for larger problems?

Hybrid Linear Solver

- Combine the benefits of both direct solvers and iterative solvers
 - Fast solving time (direct)
 - Less memory usage (iterative)
- Conjugate Gradient with Hierarchical Preconditioner (CGHP)
 - Implemented up to 6th order hierarchical finite element bases
 - Use solutions from direct solvers on the lower order system as preconditioner in CG for higher order system

Background

- Linear system Ax = b
- The convergence of iterative linear solvers such as Conjugate Gradient algorithm strongly depend on preconditioner used
- Preconditioner M
 - M is a good approximation of A
 - It is easy to solve linear system My = z
- CGHP
 - The solution from the matrix assembled from FEM using lower order bases is projected back and used as solution of the preconditioner system
 - Direct solver is used for solving the lower-order system

Hierarchical Vector Bases

p+1-order basis function set includes the
 p-order basis function set

Black: linear Black: linear

Blue: non-hierarchical quadratic Red+black: hierarchical quadratic

Linear System and Numbering

- Solve Ax=b
- Number the p-order DOFs before p+1order DOFs

Block Jacobi

$$\mathbf{x}_1 = \mathbf{A}_{11}^{-1} \mathbf{b}_1$$

$$x_2 = A_{22}^{-1}b_2$$

where the preconditioner is:

Direct factorization A11

A22 SSOR, diagonal scaling...

Symmetric Block Gauss-Seidel

$$x_1 = A_{11}^{-1}b_1$$

$$x_2 = C_{22}^{-1}(b_2 - A_{21}x_1')$$

$$x_1 = A_{11}^{-1}(b_1 - A_{12}x_2)$$

$$\begin{bmatrix} A_{11} \\ A_{21} & C_{22} \end{bmatrix} \begin{bmatrix} A_{11} \\ C_{22} \end{bmatrix}^{-1} \begin{bmatrix} A_{11} A_{12} \\ C_{22} \end{bmatrix}$$

Where
$$C_{22} = (D_{22} + \omega L_{22})D_{22}^{-1}(D_{22} + \omega L_{22}^{T})$$

Parallel Implementation of Hierarchical Preconditioner

- Number DOFs in two groups
- Avoid vector copying

CGHP Used in S3P

- H60VG3 S3P study
- 14 right hand sides
- 1024 CPUs on NERSC IBM SP2
- CGHP would be faster in solving 14 RHS than WSMP for the same problem size (assuming WSMP execution time scales linearly with problem size)

Solver	Prob. Size	Memory	Time (s)
WSMP	N=30M, nnz=484M	487GB	4462.9
CGHP	N=93M, nnz=4billion	836GB	6456.8

CGHP Used in Omega3P

- H60VG3 eigen-analysis, quadratic element, ESIL with CGHP
 - n=93 million, nnz=4 billion
 - 128CPUs for CG and ESIL iterations, 1024CPUs for WSMP
 - 2 shifts, 8 eigenvalues
 - Time: 1413s for ordering, 73s per factorization, 420min total
 - About 50 CG iterations per linear system (independent of mesh size)
 - Used 704GB only (would be over 2.5TB using direct linear solver)

Summary for CGHP

- Memory efficient
 - Can solve bigger problems
- Performance is comparable to direct solvers
- Convergence is independent of mesh size
- Hierarchical high order bases needed

- Parallel Simulation Codes
- Linear Solver Framework
- Hybrid Linear Solver
 - Conjugate Gradient with Hierarchical Preconditioner
- Wakefield Computations
- Work in Progress

Wakefields via Mode Analysis

Waveguide Loading

Frequency (GHz)

Omega3P – Accurate calculations of tightly-clustered eigenvalues (0.5% separation) in broad spectrum

Detuned Structure Wakefields

- First ever direct comparison between time and frequency domain calculations of wakefields in a realistic structure,
- Demonstrate that system scale simulation possible with parallel computing and valuable for accelerator R&D.

- Parallel Simulation Codes
- Linear Solver Framework
- Hybrid Linear Solver
 - Conjugate Gradient with Hierarchical Preconditioner
- Wakefield Computations
- Work in Progress

The Next Big Challenge

- Simulate H60VG3 with damping (Damped Detuned Structure)
- Develop parallel complex eigensolver
- Estimated matrix sizes:
 - N >= 200 millions
 - NNZ >= 8 billions

Work in Progress

(Involving SLAC, LBNL and Stanford as part of DOE's Accelerator Simulation SciDAC Project)

- Study the impact to linear solvers, eigensolvers by removing null space
- Improve the scalability of parallel solutions of sparse triangular linear systems
- Develop new direct, iterative or hybrid solvers for large sparse symmetric indefinite linear systems that have multiple right-hand sides